
The Sun SPOT processor board includes two AT91 Timer Counters that can be used in a variety of ways.
This application note describes both how to use the AT91 Timer Counter to measure elapsed time and
to perform a periodic task.

Each Sun SPOT processor board has two AT91 Timer Counters that are part of the ARM920T system-on-a-chip.
Each of the AT91 Timer Counters includes three identical 16-bit Timer Counter channels. Of these six Timer
Counter channels, four are available for SPOT applications, while two are reserved for system use.

The Timer Counter can operate in two distinct modes: Capture & Waveform generation. Each channel can be
independently programmed to perform a wide range of functions including frequency measurement, event
counting, interval measurement, pulse generation, delay timing and pulse width modulation.

Each channel has three external clock inputs, five internal clock inputs and two multi-purpose input/output
signals which can be configured by the user. Each channel drives an internal interrupt signal which can be
programmed to generate processor interrupts.

Several signals are provided on the SPOT processor board via the top connector, though the initial eDemo
sensor board does not make them available. The available signals are the three external clock inputs (TCLK0,
TCLK1, TCLK2) and the general purpose input/output pins for channel zero (TIOA0, TIOB0).

For a full description of the AT91 Timer Counter please refer to the Atmel documentation for the AT91RM9200
(available at http://www.atmel.com/dyn/resources/prod_documents/doc1768.pdf). In this note we will
discuss a few basics and give an example using the Timer to generate a periodic interrupt. For a full list of
Timer Counter bit definitions please see the Interface defined in the file
com.sun.spot.peripheral.TimerCounterBits.java.

Functional Description

Each channel is organized around a 16-bit counter. The value of the counter is incremented at each positive
edge of the selected clock. When the counter has reached the value 0xFFFF and passes to 0x0000, an overflow
occurs and the TC_COVFS bit in the Status Register is set. Each channel also has three registers (RA, RB and RC)
that can be used in various ways.

There are several types of triggers that can be specified to reset the counter and start the counter clock. These
include a software trigger that can be explicitly called in the SPOT application and a Compare RC Trigger that
causes a reset when the counter value matches the RC value.

The rate at which the Timer counts is determined by which clock is used. There are five internal clock inputs. In
the AT91RM9200, these clock inputs are connected to the Master Clock (MCK), to the Slow Clock (SLCK) and to
divisions of the Master Clock. For the Sun SPOTs the Master Clock speed is 59,904 Khz and the Slow Clock is
32.768 Khz. The available clock speeds are shown in Table 1.

Using the AT91 Timer/Counter
Ron Goldman

 A SUN SPOT APPLICATION NOTE

>

 Page 2 Using the AT91 Timer/Counter

TC Clock Input Clock Clock Speed (Khz) Time for One Tick
(usec)

Maximum
Duration (msec)

TC_CLKS_MCK2 MCK / 2 29,952 0.0334 2.188

TC_CLKS_MCK8 MCK / 8 7,488 0.1335 8.752

TC_CLKS_MCK32 MCK / 32 1,872 0.5342 35.009

TC_CLKS_MCK128 MCK / 128 468 2.1368 140.034

TC_CLKS_SLCK SLCK 32.768 30.5176 2,000.0

Table 1. Available Clock Speeds

Example 1: Measuring a Time Interval

To use the Timer to measure a time interval use Capture Mode, enable the clock to start it counting, and at the
end of the interval just read the counter value:

import com.sun.spot.peripheral.*;
import com.sun.spot.util.*;

public class TimerCounterSample implements TimerCounterBits {

 public double measureInterval() {
IAT91_TC timer = Spot.getInstance().getAT91_TC(0); // Get a Timer Counter
timer.configure(TC_CAPT | TC_CLKS_MCK32); // Use fast clock speed
timer.enableAndReset(); // Start counting

... interval to measure ...

int cntr = timer.counter(); // Get number of elapsed clock ticks
timer.disable(); // Turn off the counter
double interval = cntr * 0.5342; // Convert to time in microseconds

 return interval;
 }
}

Example 2: Perform a Periodic Task

To perform a periodic task every 25 milliseconds we want to create a loop that blocks, waiting for the AT91
Timer Counter to generate an interrupt. To do this modify the above code to set the RC Register to the number
of counts that will span the desired period, and enable interrupts on RC Compare:

 public void periodicTask() {
IAT91_TC timer = Spot.getInstance().getAT91_TC(0); // Get a Timer Counter
int cnt = (int)(25000 / 0.5342); // number of clock counts for 25 msecs
timer.configure(TC_CAPT | TC_CPCTRG | TC_CLKS_MCK32); // enable RC compare
timer.setRegC(cnt);
timer.enableAndReset();

while (true) { // Start periodic task loop
 timer.enableIrq(TC_CPCS); // Enable RC Compare interrupt
 timer.waitForIrq(); // Wait for interrupt
 timer.status(); // Clear interrupt pending flag
 doTask(); // Method will be called every 25 msecs

}
 }

www.sunspotworld.com

 Page 3 Using the AT91 Timer/Counter

Note: While the above code will generally call doTask() every 25 milliseconds, sometimes the call
will be delayed because the interrupt occurs during a GC or a long-lived native operation or while a
higher priority thread is running. While testing the above code the delay was observed to be either just a
few (1-3) milliseconds for incremental GC and about 20-30 milliseconds for a full GC.

Note: The Green release did not include a definition for TC_CPCTRG. It should be defined as:

int TC_CPCTRG = 0x4000;

A Java thread detects an interrupt by calling waitForIrq(). This method performs a Channel IO request. If
the Timer Counter interrupt bit is set then the request returns immediately. If not, the calling thread is blocked
until the interrupt occurs. To clear the interrupt bit call status().

To handle an interrupt in Java you must:

1. Call configure(int) to configure the timer so that it will generate an interrupt request.
2. Call enableAndReset() to start the timer counting
3. Call enableIrq(int) to enable one or more of the interrupt sources associated with this TC

channel.
4. Call waitForIrq() to wait for the interrupt.
5. Call status() to clear the interrupt.
6. Call enableIrq(int) to allow another interrupt.
7. Repeat from (4)

If you don't want more interrupts then don't call enableIrq(int).

www.sunspotworld.com

About Sun Labs

Established in 1990, Sun Microsystems Laboratories is the applied research and advanced development arm of
Sun Microsystems, Inc., with locations in California and Massachusetts. Sun Labs is one of the ways Sun invests
in the future, and is responsible for many of the technology advancements that have made Sun a technology
powerhouse—including asynchronous and high-speed circuits, optical interconnects, 3rd-generation Web
technologies, sensors, network scaling and Java technologies. Although many companies have R&D groups,
Sun Labs can claim one of the highest rates of technology transfer in the industry.

Sun Microsystems, Inc. 4150 Network Circle, Santa Clara, CA 95054 USA Phone 1-650-960-1300 or 1-800-555-9SUN Web sun.com

©2007 Sun Microsystems Inc. All rights reserved Sun, Sun Microsystems, the Sun logo,Solaris, Java, and HotSpot is are trademarks or registered trademarks of Sun Microsystems, Inc. in the United States and other countries. All
SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. in the US and other countries. Products bearing SPARC trademarks are based upon an architecture developed by
Sun Microsystems, Inc. 02/23/07

