
PDF internals

Table of Contents
1. Creating a simple PDF file ..3

1.1 How to create a simple PDF file ..4

2. Fonts explained ..8

2.1 Introduction to Fonts ...9

1. Creating a simple PDF
file

1. Creating a simple PDF file 3

PDF internals

1.1 How to create a simple PDF file

Brief history of PDF

The beginning - John Warnock, an engineer at Xerox, devel-
oped a language called ‘Interpress’ that could be used to
control Xerox laser printers. He along with his boss, Charles
M. Geschke, tried for two years to convince Xerox to turn In-
terpress into a commercial product. When this failed, they
decided to leave Xerox and try it on their own - by founding
Adobe.

PDF started off as an internal project at Adobe by John
Warnock to create a file format so that documents could be
spread throughout the company and displayed on any com-
puter using any operating system. The engineers at Adobe
enhanced two technologies: Postscript and Adobe Illustrator
and created both a new file format (PDF, which is really a
kind of optimized PostScript) and a set of applications to cre-
ate and visualize these files.

The internal structure of PDF

PDF files use a fixed structure and always contain 4 sections:

• A header, which contains information on the PDF-specifi-
cations the file adheres to. This line looks like this:

%PDF-1.7

• The body area which contains a description of the various
elements that are placed on the pages.

1. Creating a simple PDF file 1.1 How to create a simple PDF file 4

PDF internals

1 0 obj
...
endobj
2 0 obj
...
endobj
...

• A cross-reference table which refers to all the elements
from the body that are used on the pages of the PDF-file.
In other words, the table is mainly a list of the addresses
of each object in the body section.

xref
0 6
0000000000 65535 f
0000000010 00000 n
0000000079 00000 n
0000000173 00000 n
0000000301 00000 n
0000000380 00000 n

The first number after xref says that this list starts at object 0,
the object number of the first object in this subsection. The
second number after xref is a count of how many objects (6)
are in this table and that the remaining five entries are for ob-
jects with object numbers 1, 2, 3, 4 and 5. Here object #1 is at
offset 10 and is 'in use' (n).

Please note that the first ten digits (0000000000) of the first
entry for object 0 points to the next free object, which is, the
first object itself.

• A trailer which tells applications or RIPs where to find the
cross-reference table and always ends with ‘%%EOF’. If
this line is missing, the PDF-file is not complete and can
probably not be processed by any RIP or application. This
is not the case with PostScript files. If the last few lines of
a PostScript file are missing (because of a lost connection
while transferring the file or a computer crash) you can
often still print most of the pages. With a PDF-file, you’ll
lose everything.

trailer

1. Creating a simple PDF file 1.1 How to create a simple PDF file 5

PDF internals

<<
 /Size 6
 /Root 1 0 R
>>
startxref
492
%%EOF

The end of a PDF file is read first by the PDF reading applica-
tion. The trailer holds information about the location and de-
tails of the Cross-reference table. The trailer has three parts.
The first part has the keyword trailer followed by a dictionary
that holds values for certain fields.

The second part has the keyword startxref, and in the next
line, a number. The number denotes how far (in bytes) the
keyword xref (of the last section of the cross-reference table)
is from the start of the file. The very next line has the value
%%EOF to denote the end of the file.

Start with a simple PDF

%PDF-1.4
1 0 obj
<<
 /Length 51
>>
stream
1 0 0 RG
5 w
36 144 m
180 144 l
180 36 l
36 36 l
s
endstream
endobj
2 0 obj
<<
 /Type /Catalog
 /Pages 3 0 R
>>

1. Creating a simple PDF file 1.1 How to create a simple PDF file 6

PDF internals

endobj
3 0 obj
<<
 /Type /Pages
 /Kids [4 0 R]
 /Count 1
>>
endobj
4 0 obj
<<
 /Type /Page
 /Parent 3 0 R
 /MediaBox [0 0 612 792]
 /Contents 1 0 R
>>
endobj

xref
0 4
0000000000 65535 f
0000000010 00000 n
0000000113 00000 n
0000000165 00000 n
0000000227 00000 n
trailer
<<
 /Size 4
 /Root 2 0 R
>>
startxref
344
%%EOF

Copy this code in a text editor and create your own PDF file.

NOTE: This PDF was written manually and is voluntarily sim-
plied for the purpose of this introduction. Production PDFs
are usually more complex.

1. Creating a simple PDF file 1.1 How to create a simple PDF file 7

PDF internals

2. Fonts explained

2. Fonts explained 8

PDF internals

2.1 Introduction to Fonts

Important terms

• Glyph: A ‘glyph’ is the shape of a character in a font
• .notdef glyph: A ‘.notdef’ glyph is a particular character

that is used when glyph selection fails
• Empty glyph: An ‘empty glyph’ is a glyph without contour

(shape), e.g. a blank

Font basics

Each block of text in a PDF document consists of four sets of
data.

• The encoded charactersencoded characters which are sequences of bytes
that represent the individual character codes that make
up the text in the page

• The font datafont data which is a group of glyphs (character visual-
izations) accessed by a unique number called a Glyph ID Glyph ID
(present in the font) (present in the font)

• A map that links the encoded character codes to Glyph
IDs (This mapping can be called encoding or glyph selec-
tion or glyph mapping)

• An optional map that links the character codes to Uni-
code values. This map is not needed when displaying the
PDF but is required to allow the user to extract text con-
tent from the document (Mapping to Unicode: explained
below)

How a page description in PDF makes use of fonts

• Page description (content stream) selects font through an
internal name: /F25 12 Tf

• Internal name points to font resource object (for current
page):

/Resources << /Font << /F25 12 0 R >> >>

• Font resource object contains information about the font,
for example:

1. Base name (example: /Courier)

2. Fonts explained 2.1 Introduction to Fonts 9

PDF internals

2. Font type (example: /TrueType)
3. Character widths (example: [593 615 572 ...])

• Optionally: the actual font itself (= “font is embedded”)
• Data stream (for example in /FontFile2 ...)

• Optionally: /ToUnicode table for mapping to Unicode

Mechanisms to include fonts in a PDF

By preference any fonts that are used in a layout are also in-
cluded in the PDF file itself. This makes sure that the file can
be viewed and printed as it was created by the designer.
There are two mechanisms to include fonts in a PDF:

• Full embedding – A full copy of the entire character set of
a font is stored in the PDF.

• Subsetting – Only those characters that are actually used
in the layout are stored in the PDF. If the “$” character
doesn’t appear anywhere in the text, that character is not
included in the font. This means that PDF files with sub-
setted fonts are smaller than PDF files with embedded
fonts.

2. Fonts explained 2.1 Introduction to Fonts 10

PDF internals

Font types

• Simple fonts: 1 byte character codes that can address
max. 256 glyphs

1. Type 1: 20 years old hence ancient in technology terms.
Type 1 fonts are not cross-platform.

2. Compact Font Format (CFFCFF font), very similar to Type 1
3. Type 3: Uses PDF drawing commands to define the glyph

outlines. This font format allows greater flexibility over
the appearance of the glyphs but does not include a hinthint--
inging mechanism resulting in reduced visual quality for
small text or low resolutions.

4. TrueType: Outline fonts which means that they can deliv-
er output at any resolution or size.

5. OpenType: OpenType fonts internally resemble either
TrueType fonts or Type 1 font data

• Composite fonts: 1 or 2 byte character codes that can ad-
dress max. 65535 glyphs

1. Type 0: (Type 1 or OpenType/Type 1/CFF based)
2. Type 2: (TrueType or OpenType/TrueType based)

Mapping to Unicode

• Not required for displaying the page, but for text search
or text copy.

• Options of mapping to Unicode:

1. Implicitly by standard (glyph selection) encodings in the
PDF (example: MacRomanEncoding)

2. Encoding information in the actual font (‘ToUnicode”
cmap in TrueType fonts)

3. By glyph names in the actual font (in Type 1 fonts) via the
Adobe Glyph List (maps glyph names to Unicode)

4. Explicitly by a ToUnicode table in the PDF data structure

2. Fonts explained 2.1 Introduction to Fonts 11

PDF internals

	1. Creating a simple PDF file
	1.1 How to create a simple PDF file
	Brief history of PDF
	The internal structure of PDF
	Start with a simple PDF

	2. Fonts explained
	2.1 Introduction to Fonts
	Important terms
	Font basics
	How a page description in PDF makes use of fonts
	Mechanisms to include fonts in a PDF
	Font types
	Mapping to Unicode

